The Antibacterial Activity of Chitosan from Haruan (Channa striata) Fish Scales on the Growth of Streptococcus sanguinis
Abstract
Introduction: Recurrent Aphthous Stomatitis (RAS) is the most common oral lesion in Banjarmasin, with a prevalence of 45.42%. Streptococcus sanguinis (S. sanguinis) is thought to be one of the factors causing RAS. One natural ingredient that is often used by the people of South Kalimantan is the Haruan fish. The high Haruan fish consumption will eventually leave fish scales that have the potential to pollute the environment if not addressed immediately. Fish scales contain chitin, which when deacetylated produces chitosan, which has antibacterial properties. Objectives: The purpose of this study was to determine the effectiveness of the chitosan from the scales of the Haruan fish (Channa striata) at inhibiting S. sanguinis growth. Methods: This study used a randomized pretest-posttest with control group design using five treatments. The five treatments were subjected to liquid dilution using the UV-Vis Spectrophotometer method to obtain minimum inhibitory concentration (MIC) and a solid dilution test using the Total Plate Count method to obtain minimum bactericidal concentration (MBC). Results: The results showed that Haruan scale chitosan proved to be effective as an antibacterial against S. sanguinis, with a MIC of 1.25% and a minimum lethal concentration of 2.5%. One-Way Anova test results showed significance for the MIC test (p = 0,000) and MBC test (p = 0.000; p < 0.05). Conclusion: Chitosan from Haruan fish scales is both inhibitory and lethal to S. sanguinis.
References
Setiawan MR, Dewi N, Oktaviyanti IK. Extract of haruan (Channa striata) increases neocapillaries count in wound healing process. Dentofasial. 2015;14(1):1-5.
Agustin R, Dewi N, Rahardja SD. Efektivitas ekstrak ikan haruan (Channa striata) dan ibuprofen terhadap jumlah sel neutrofil pada proses penyembuhan luka studi in vivo pada mukosa bukal tikus (Rattus norvegicus) Wistar. Dentino J Ked Gi. 2016;1(1):68–74.
Budirahardjo R. Sisik ikan sebagai bahan yang berpotensi mempercepat proses penyembuhan jaringan lunak rongga mulut, regenerasi dentin tulang alveolar. Stomatognatic (JKG Unej). 2010;7(2):136-140.
Faridah F, Khafidzoh A, Mustikawati D, Anggraeni N, Dharmawan Y. Chitosan pada sisik ikan bandeng (Chanos chanos) sebagai alternatif pengawet alami pada bakso. Jurnal Ilmiah Mahasiswa. 2012;2(2):76-79.
Fawzya YN, Novianty R, Wibowo S. Effect of deacetylation and alkalination on the characteristic of carboxymethil chitosan. Jurnal Perikanan (J Fish Sci). 2008;10(1):64-75.
Suherman B, Latif M, Dewi STR. Potensi kitosan kulit udang vannamei (Litopenaeus vannamei) sebagai antibakteri Staphylococcus epidermidis, Pseudomonas aeruginosa, Proponibacterium acnes, dan Escherichia coli dengan metode difusi cakram kertas. Media Farmasi. 2018;14(1):116-127.
Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol. 2004; 95:147–155.
Putri DKT, Hutami WDW, Oktiani BW, Candra, Sukmana BI, Rachmadi P, et al. Synthesis and characteristics of chitosan from haruan (Channa striata) fish scales. Sys Rev Pharm. 2020; 4(11):15-20.
Mursida, Tasir, Sahriawati. Efektifitas larutan alkali pada proses deasetilasi dari berbagai bahan baku kitosan. J Pengolah Has Perikan Indones. 2018;21(2):356-366.
Kim S. Competitive biological activities of chitosan and its derivates: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Hindawi Int J Polymer Sci. 2018; 1708172:1-14.
Aliasghari A, Khorasganai MR, Vaezifar S, Rahimi F, Younesi H, Khouroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci : an in vitro study. Iran J Microbiol. 2016;8(2):93–100.
Najafi MH, Taheri M, Mokhtari MR, Forouzanfar A, Farazi F, Mirzaee M, Ebrahiminik Z, Mehrara R. Comparative study of 0.2% and 0.12% digluconate chlorhexidine mouth rinses on the level of dental staining and gingival indices. Dent Res J. 2012;9(3):305–308.
Ahing FA, Wid N. Optimization of shrimp shell waste deacetylation for chitosan production. Int J Adv Appl Sci. 2016;3(10):31-36.
Gokulalakshmi E, Ramalingam K, Umasankari U, Vanitha MC. Extraction and characterization of chitosan obtained from scales of Clarias gariepinus (Catfish). Biotechnol J Int. 2017;18(4): 1-8.
Alcalde LB, Fonseca GG. Alkali process for chitin extraction and chitosan production from Nile tilapia (Oreochromis niloticus) scales. Lat Am J Aquat Res. 2016;44(4):683-688.
Sugiyanti D, Darmadji P, Anggrahini S, Anwar C, Santoso U. Preparation and characterization of chitosan from Indonesian Tambak Lorok shrimp shell waste and crab shell waste. Pak J Nutr. 2018;17(9):446-453.
Srivastav A, Mishra SS, Debnath S, Datta D. Extraction and characterization of chitosan from waste scales of Labeo rohita. J Emerg Technol Innov Res. 2018;5(6):540-544.
Warokka KE, Wuisan J, Juliatri. Uji konsentrasi hambat minimum (KHM) ekstrak daun binahong (Anredera cordifolia Steenis) sebagai antibakteri terhadap pertumbuhan Streptococcus mutans. J Gi. 2016;4(2):155-159.
Ummah ZK, RASi N, Fortuna J, Boy E. Perbandingan efektifitas chitosan sisik ikan bandeng dengan gentamisin terhadap perkembangan Eschericia coli. J Ked Yarsi. 2017;25(2):108-114.
Raafat D, Sahl HG. Chitosan and its antimicrobial potential-A critical literature survey. Microb Biotech. 2009; 2:186–201.
Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci. 2013;14(1):1854–1869.
Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4(6):1457-1465.
Friedman AJ, Phan J, Schairer D, Champer J, Qin M, Pirouz A, et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens. J Invest Dermatol. 2013;133(5):1231–1239.
Goy RC, Britto DD, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros. 2009;19(3):241-247.
Putri DKT, Kriswandini IL, Luthfi M. Characterization of Streptococcus sangunis molecular receptors for Streptococcus mutans binding molecules. Dent J (Maj Ked Gi). 2016;49(4):213–216.
2Yamaguchi M, Terao Y, Ogawa T, Takahashi T, Hamada S, Kawabata S. Role of Streptococcus sanguinis sortase A in bacterial colonization. Microbes Infect. 2006;8(12-13):2791-6.
Gupta R, Chandavarkar V, Galgali SR, Mishra M. Chlorhexidine, A Medicine for all the Oral Diseases. Glob J Med Public Health. 2012;1(2):43-48.
Leonarto MN, Habar EH. The impact of mouth-rinsing using chlorhexidine gluconate 0.2% to the amount of plaque-causing bacteria colonies in fixed orthodontic users. J Dentomaxillofac Sci. 2017;2(2):91-94.
Sinaredi BR, Pradopo S, Wibowo TB. Daya antibakteri obat kumur chlorhexidine, povidone iodine, fluoride suplementasi zinc terhadap Streptococcus mutans dan Porphyromonas gingivalis. Dent J (Maj Ked Gi). 2014;47(4) : 211–221.
Agustin R, Dewi N, Rahardja SD. Efektivitas ekstrak ikan haruan (Channa striata) dan ibuprofen terhadap jumlah sel neutrofil pada proses penyembuhan luka studi in vivo pada mukosa bukal tikus (Rattus norvegicus) Wistar. Dentino J Ked Gi. 2016;1(1):68–74.
Budirahardjo R. Sisik ikan sebagai bahan yang berpotensi mempercepat proses penyembuhan jaringan lunak rongga mulut, regenerasi dentin tulang alveolar. Stomatognatic (JKG Unej). 2010;7(2):136-140.
Faridah F, Khafidzoh A, Mustikawati D, Anggraeni N, Dharmawan Y. Chitosan pada sisik ikan bandeng (Chanos chanos) sebagai alternatif pengawet alami pada bakso. Jurnal Ilmiah Mahasiswa. 2012;2(2):76-79.
Fawzya YN, Novianty R, Wibowo S. Effect of deacetylation and alkalination on the characteristic of carboxymethil chitosan. Jurnal Perikanan (J Fish Sci). 2008;10(1):64-75.
Suherman B, Latif M, Dewi STR. Potensi kitosan kulit udang vannamei (Litopenaeus vannamei) sebagai antibakteri Staphylococcus epidermidis, Pseudomonas aeruginosa, Proponibacterium acnes, dan Escherichia coli dengan metode difusi cakram kertas. Media Farmasi. 2018;14(1):116-127.
Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol. 2004; 95:147–155.
Putri DKT, Hutami WDW, Oktiani BW, Candra, Sukmana BI, Rachmadi P, et al. Synthesis and characteristics of chitosan from haruan (Channa striata) fish scales. Sys Rev Pharm. 2020; 4(11):15-20.
Mursida, Tasir, Sahriawati. Efektifitas larutan alkali pada proses deasetilasi dari berbagai bahan baku kitosan. J Pengolah Has Perikan Indones. 2018;21(2):356-366.
Kim S. Competitive biological activities of chitosan and its derivates: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Hindawi Int J Polymer Sci. 2018; 1708172:1-14.
Aliasghari A, Khorasganai MR, Vaezifar S, Rahimi F, Younesi H, Khouroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci : an in vitro study. Iran J Microbiol. 2016;8(2):93–100.
Najafi MH, Taheri M, Mokhtari MR, Forouzanfar A, Farazi F, Mirzaee M, Ebrahiminik Z, Mehrara R. Comparative study of 0.2% and 0.12% digluconate chlorhexidine mouth rinses on the level of dental staining and gingival indices. Dent Res J. 2012;9(3):305–308.
Ahing FA, Wid N. Optimization of shrimp shell waste deacetylation for chitosan production. Int J Adv Appl Sci. 2016;3(10):31-36.
Gokulalakshmi E, Ramalingam K, Umasankari U, Vanitha MC. Extraction and characterization of chitosan obtained from scales of Clarias gariepinus (Catfish). Biotechnol J Int. 2017;18(4): 1-8.
Alcalde LB, Fonseca GG. Alkali process for chitin extraction and chitosan production from Nile tilapia (Oreochromis niloticus) scales. Lat Am J Aquat Res. 2016;44(4):683-688.
Sugiyanti D, Darmadji P, Anggrahini S, Anwar C, Santoso U. Preparation and characterization of chitosan from Indonesian Tambak Lorok shrimp shell waste and crab shell waste. Pak J Nutr. 2018;17(9):446-453.
Srivastav A, Mishra SS, Debnath S, Datta D. Extraction and characterization of chitosan from waste scales of Labeo rohita. J Emerg Technol Innov Res. 2018;5(6):540-544.
Warokka KE, Wuisan J, Juliatri. Uji konsentrasi hambat minimum (KHM) ekstrak daun binahong (Anredera cordifolia Steenis) sebagai antibakteri terhadap pertumbuhan Streptococcus mutans. J Gi. 2016;4(2):155-159.
Ummah ZK, RASi N, Fortuna J, Boy E. Perbandingan efektifitas chitosan sisik ikan bandeng dengan gentamisin terhadap perkembangan Eschericia coli. J Ked Yarsi. 2017;25(2):108-114.
Raafat D, Sahl HG. Chitosan and its antimicrobial potential-A critical literature survey. Microb Biotech. 2009; 2:186–201.
Tan H, Ma R, Lin C, Liu Z, Tang T. Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci. 2013;14(1):1854–1869.
Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4(6):1457-1465.
Friedman AJ, Phan J, Schairer D, Champer J, Qin M, Pirouz A, et al. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens. J Invest Dermatol. 2013;133(5):1231–1239.
Goy RC, Britto DD, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros. 2009;19(3):241-247.
Putri DKT, Kriswandini IL, Luthfi M. Characterization of Streptococcus sangunis molecular receptors for Streptococcus mutans binding molecules. Dent J (Maj Ked Gi). 2016;49(4):213–216.
2Yamaguchi M, Terao Y, Ogawa T, Takahashi T, Hamada S, Kawabata S. Role of Streptococcus sanguinis sortase A in bacterial colonization. Microbes Infect. 2006;8(12-13):2791-6.
Gupta R, Chandavarkar V, Galgali SR, Mishra M. Chlorhexidine, A Medicine for all the Oral Diseases. Glob J Med Public Health. 2012;1(2):43-48.
Leonarto MN, Habar EH. The impact of mouth-rinsing using chlorhexidine gluconate 0.2% to the amount of plaque-causing bacteria colonies in fixed orthodontic users. J Dentomaxillofac Sci. 2017;2(2):91-94.
Sinaredi BR, Pradopo S, Wibowo TB. Daya antibakteri obat kumur chlorhexidine, povidone iodine, fluoride suplementasi zinc terhadap Streptococcus mutans dan Porphyromonas gingivalis. Dent J (Maj Ked Gi). 2014;47(4) : 211–221.
Published
2020-10-30
How to Cite
HUTAMI, Wijayanti Diah Wasi et al.
The Antibacterial Activity of Chitosan from Haruan (Channa striata) Fish Scales on the Growth of Streptococcus sanguinis.
Journal of Indonesian Dental Association, [S.l.], v. 3, n. 2, p. 109-114, oct. 2020.
ISSN 2621-6175.
Available at: <http://jurnal.pdgi.or.id/index.php/jida/article/view/450>. Date accessed: 21 nov. 2024.
doi: https://doi.org/10.32793/jida.v3i2.450.
Section
Research Article
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.