Synthesis and Physical Characterization of Nano-Hydroxyapatite-Collagen-Epigallocatechin-3-Gallate Hydrogel Composite

  • Hiroko Gabriela Amanda Undergraduate Student, Faculty of Dentistry, Trisakti University, Indonesia
  • Elline Elline Department of Conservative Dentistry, Faculty of Dentistry, Trisakti University, Indonesia
  • Eko Fibryanto Department of Conservative Dentistry, Faculty of Dentistry, Trisakti University, Indonesia

Abstract

 
Introduction: Most commonly used vital pulp therapy material is calcium hydroxide (Ca(OH)2) but it has several disadvantages. Previous studies found that nano-hydroxyapatite might induce reparative dentin with no tunnel defect and adding collagen can improve hydroxyapatite mechanical properties. The collagen can also increase pulp cell proliferation and differentiation. The addition of Epigallocatechin-3-Gallate (EGCG) to collagen gel can be beneficial in reducing pulp inflammation.
Objective: The purpose of this study is to synthesize and analyze the physical characteristics of the nano-Hydroxyapatite-collagen-Epigallocatechin-3-Gallate hydrogel composite.
Methods: Nano-hydroxyapatite from chicken egg shells, 0,2 g/mL collagen type I, and 10 mmol/L EGCG each dissolved in 2 mL deionized water with various ratio of nano-hydroxyapatite:collagen, 40:60 (group 1), 50:50 (group 2), and 60:40 (group 3). Each solution was mixed together then 2% HPMC was added into the mixture. In present study, we observed hydrogel composite pH value, gelation time, and injectability analysis.
Results: The pH value in 1 hour stirring for each group was 8,05 ± 0,05, 8,43 ± 0,02, and 8,71 ± 0,04. All samples had 1 hour gelation time. Injectability for each group was 90,67%, 91,93%, and 95,03%.
Conclusions: The nanohydroxyapatite, collagen and EGCG hydrogel composite has a potential physical characterization to be used as a vital pulp therapy material based on its pH value and injectable ability but further study should be considered in determining ideal gelation time.
 
ABSTRAK
Pendahuluan: Bahan perawatan pulpa vital yang paling umum digunakan adalah kalsium hidroksida (Ca(OH)2), tetapi bahan tersebut memiliki beberapa kekurangan. Penelitian sebelumnya menunjukkan nano-hidroksiapatit mampu merangsang pembentukan dentin reparatif tanpa tunnel defect dan penambahan kolagen mampu meningkatkan sifat mekanik hidroksiapatit. Penambahan Epigallocatechin-3-Gallate (ECGC) pada gel kolagen bermanfaat dalam mengurangi respon inflamasi pulpa.
Tujuan: Penelitian ini dilakukan untuk mensintesis dan melakukan uji karakteristik fisik komposit hidrogel nano-hidroksiapatit-kolagen-Epigallocatechin-3-Gallate.
Metode: Nano-hidroksiapatit dari cangkang telur ayam dilarutkan dengan 0,2 g/mL kolagen tipe I, dan 10 mmol/L EGCG masing-masing ke dalam air deionisasi dengan perbandingan rasio nano-hidroksiapatit dan kolagen, 40:60 (kelompok 1), 50:50 (kelompok 2), dan 60:40 (kelompok 3). Seluruh larutan dicampurkan dan ditambahkan HPMC 2%, lalu dilakukan uji karakteristik gel berupa uji pH, waktu gelasi, dan uji injektabilitas. 
Hasil: Nilai pH 1 jam setelah pengadukan secara berurutan adalah 8,05 ± 0,05, 8,43 ± 0,02, dan 8,71 ± 0,04 dengan waktu gelasi selama 1 jam. Injektabilitas secara berurutan adalah 90,67%, 91,93%, dan 95,03%.
Kesimpulan: Bahan komposit hidrogel nano-hidroksiapatit, kolagen, dan EGCG memiliki karakteristik fisik yang berpotensi untuk digunakan sebagai bahan terapi pulpa vital jika dilihat dari nilai pH dan kemampuan injektabilitas yang diperoleh.

References

World Health Organization. Oral health. Geneva: World Health Organization; 2009
Kementerian Kesehatan RI. Infodatin: Pusat Data dan Informasi Kementerian Kesehatan RI. Jakarta: Kementerian Kesehatan. 2019.
Wells C, Dulong C, McCormack S. Vital pulp therapy for endodontics treatment of mature teeth: a review of clinical effectiveness, cost-effectiveness, and guidelines. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2019.
Hanna SN, Perex Alfayate R, Prichard J. Vital pulp therapy and insight over the available literature and future expectations. Eur Endod J. 2020;1:46-53.
Widjiastuti I, Setyabudi, Ismiyanti K, Purwanto DA, Sukmawati T. Effect of hydrogel epigallocatechin-3-gallate (EGCG) to the number of fibroblast cell proliferation in the perforation of wistar rat tooth pulp. Conserv Dent J. 2019;9(2): 93-96.
Akhlagi N, Khademi A. Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature. Dent Res J. 2015;12(5):406-417.
Swarup SJ, Rao A, Boaz K, Srikant N, Shenoy R. Pulpal response to nano hydroxyapatite, mineral trioxide aggregate and calcium hydroxide when used as a direct pulp capping agent: an in vivo study. Int J Clin Pediatr Dent. 2014;38(3):201-206.
Gshalaev VS, Demirchan AC. Hydroxyapatite: synthesis, properties, and applications.In: Biomaterials – Properties, Production and Devices. New York: Nova Science Publisher; 2012. p. 17.
Milovac D, Ferrer GG, Ivankovix M, Ivankovic H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Mater Sci Eng C. 2014;437-445.
Imataki R, Shinonaga Y, Nishimura T, Abe Y, Arita K. Mechanical and functional properties of a novel apatite-ionomer cement for prevention and remineralization of dental caries. Materials (Basel). 2019;12(3):3998.
Pelpa E, Besherat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014;V(3):108-114.
Pu’ad NA, Koshy P, Abdullah HZ, Idris MI, Lee TC. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019;5(5):e01588.
Abdulrahman I, Tijani HI, Mohammed BA, Saidu H, Yusuf H, Jibrin MN, et al. From garbage to biomaterials: an overview on egg shellbased hydroxyapatite. J Mater. 2014;2014;1-6.
Trivedi S, Srivastava K, Saluja TS, Shyam H, Kumar S, Singh A, et al. Hydroxyapatite-collagen augments osteogenic differentiation of dental pulp stem cells. Odontology. 2020;108(2):251-259.
Leon-Lopez A, Morales-Penaloza A, Matinez-Juarez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Alvarez G. Hydrolyze collagen: source and applications. Molecules. 2019;24(22):4031.
Fratzl P. Collagen structure and mechanics. Cham, Switzerland: Springer; 2008. pp. 1-15.
Ding C, Zhang M, Li G. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydr Polym. 2015;119:194-201.
Wu M, Cronin K, Crane JS. Biochemistry, Collagen Synthesis. [Updated 2021 Sep 13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507709/ [cited 2021 August 19]
Chu C, Deng J, Xiang L, Wu Y, Wei X, Qu Y, et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts. Mater Sci Eng C. 2016;67:386-394.
Kwon YS, Kim HJ, Hwang YC, Rosa V, Yu MK, et al. Effects of epigallocatechin gallate, an antibacterial cross-linking agent, on proliferation and differentiation of human dental pulp cells cultured in collagen scaffolds. J Endod. 2017;43(2):289-295.
Narotzki B, Reznick AZ, Aizenbud D, Levy Y. Green tea: a promising natural product in oral health. Arch Oral Biol. 2012;57:429-435.
Hikmawati D, Maulida HN, Budiatin AS. Synthesis and characterization of nanohydroxyapatite-gelatin composite with streptomycin as tuberculosis injectable bone substitute. Inter J Biomater. 2019;2019:1-9.
Elsevier. Suspending Agent [Internet]. Elsevier: ScienceDirect; 2022. [cited 2022 Apr 19]. Available from: Suspending Agent-an overview Science Direct Topics
Yan J, Miao Y, Tan H, Zhou T, Ling Z, Chen Y, et al. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;63:274-84.
Wu S, Zhou Y, Yu Y, Zhou X, Du W, Wan M, et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int. 2019;2019:1515040.
Sharma LA, Love RM, Ali MA, Sharma A, Macari S. Healing response of rat pulp treated with an injectable keratin hydrogel. J Appl Biomater Funct. 2017;15:e244-e250.
Hassanazadeh A, Ashrafihelan J, Salehi R, Rahbarghazi R, Firouzamandi M, Ahmadi M, et al. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application. Artif Cells Nanomed Biotechnol. 2021;49(1):136-146.
Singh PH. Theory of optimum pH for pulp vitality: a clinical and experimental theory of endodontic. EC Clinical and Medical Case Reports. 2020; 3(1):01-03
Hirose Y, Yamaguchi M, Kawabata S, Murakami M, Nakashima M. Effects of extracellular pH on dental pulp cells in vitro. J Endod. 2016;5:735-741.
Bendtsen ST, Wei M. Synthesis and characterization of a novel injectable alginate-collagen-hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem. 2015;3:3081-3090.
Chen CP, Hsieh CM, Tsai T, Yang JC, Chen CT. Optimization and evaluation of a chitosan/ hydroxypropyl methylcellulose hydrogel containing toluidine blue o for antimicrobial photodynamic inactivation. Int J Mol Sci. 2015;16:20860-20871.
Maulida HN, Hikmawati D, Budiatin AS. Injectable bone substitute paste based on hydroxyapatite, gelatin and streptomycin for spinal tuberculosis. J Stem Cell Res Tissue Eng.. 2019;3(2):56-66.
Published
2022-05-17
How to Cite
AMANDA, Hiroko Gabriela; ELLINE, Elline; FIBRYANTO, Eko. Synthesis and Physical Characterization of Nano-Hydroxyapatite-Collagen-Epigallocatechin-3-Gallate Hydrogel Composite. Journal of Indonesian Dental Association, [S.l.], v. 5, n. 1, p. 7-13, may 2022. ISSN 2621-6175. Available at: <http://jurnal.pdgi.or.id/index.php/jida/article/view/769>. Date accessed: 14 nov. 2024. doi: https://doi.org/10.32793/jida.v5i1.769.
Section
Research Article