Cone-Beam Computed Tomography Accuracy for Morphological and Morphometric Evaluation of Mandibular Condyles Using Small FOV and Small Voxel Size

  • Sariyani Pancasari Audry Arifin Specialist student of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
  • Bramma Kiswanjaya Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
  • Menik Priaminiarti Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
  • Hanna H. Bachtiar Iskandar Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia

Abstract

 
The objective of this study is to evaluate the accuracy of cone beam computed tomography (CBCT) in determining and visualizing the morphology and morphometry of the mandibular condyle. Narrative reviews with article searches were carried out through NCBI's PubMed database and Scopus from September 2021–October 2021, with the inclusion criteria articles published in 2011–2021.  The temporomandibular joint (TMJ) has a crucial role and is closely related to the masticatory system. The diagnosis of temporomandibular disorder (TMD) is not easy and is complex enough to require a comprehensive clinical and radiographic examination. Pathological changes such as erosion of the condyle, fracture, ankylosis, dislocation, and osteophyte can be well seen using CBCT imaging. CBCT images obtained with smaller field of view (FOV) have smaller a voxel size and a higher image resolution. FOV or scan volume refers to the anatomical area that will be included in the data volume or the area of the patient that will be irradiated. The dimension of FOV depends on the detector size and shape, the beam projection geometry, and the ability to collimate the beam. Voxel size is an important component of image quality, related to both the pixel size and the image matrix. Selection of small FOV and small voxel size is recommended because they provide better visualization and detail for the evaluation of morphology and morphometry of the condyle, especially the detection of erosion and defects on the condyle surface.

References

Zhang Y, Xu X, Liu Z. Comparison of Morphologic Parameters of Temporomandibular Joint for Asymptomatic Subjects Using the Two-Dimensional and Three-Dimensional Measuring Methods. J Healthc Eng. 2017;2017:8. doi:10.1155/2017/ 5680708
Mahdian N, Dostálová T, Daněk J, et al. 3D reconstruction of TMJ after resection of the cyst and the stress-strain analyses. Comput Methods Programs Biomed. 2013;110(3):279-289. doi:10.1016/j.cmpb.2012.12.001
Okeson JP. Management of Temporomandibular Disorders and Occlusion. 8th ed. Elsevier; 2020.
Park IY, Kim JH, Park YH. Three-dimensional cone-beam computed tomography based comparison of condylar position and morphology according to the vertical skeletal pattern. Korean J Orthod. 2015;45(2):66-73. doi:10.4041/kjod.2015.45.2.66
Bae S, Park M, Han J, Kim Y. Correlation between pain and degenerative bony changes on cone-beam computed tomography images of temporomandibular joints. Maxillofac Plast Reconstr Surg. 2017;39(1):19. doi:https://doi.org/10.1186/s40902-017-0117-1
Md Anisuzzaman M, Khan SR, Khan MTI, Abdullah MK, Afrin A. Evaluation of Mandibular Condylar Morphology By Orthopantomogram In Bangladeshi Population. Updat Dent Coll J. 2019;9(1):29-31. doi:10.3329/updcj.v9i1.41203
Dupuy-Bonafé I, Otal P, Montal S, Bonafé A, Maldonado IL. Biometry of the temporomandibular joint using computerized tomography. Surg Radiol Anat. 2014;36(9):933-939. doi:10.1007/s00276-014-1277-7
Coster PJ De, Lecturer S, Care S, Pain O, Martens LC, Care S. Generalized Joint Hypermobility and Temporomandibular Disorders: Inherited Connective Tissue Disease as a Model with Maximum Expression. J Orofac Pain. 2005;19(1):47-57.
Wright EF. Manual of Temporomandibular Disorders. 3rd ed. Willey Blackwell; 2014.
Mallaya S, Lam E. White and Pharoah’s Oral Radiology Principles and Interpretation. 8th ed. Elsevier Health Sciences; 2019.
Iskanderani D, Nilsson M, Alstergren P, Shi XQ, Hellen-Halme K. Evaluation of a low-dose protocol for cone beam computed tomography of the temporomandibular joint. Dentomaxillofacial Radiol. 2020;49(6):1-7. doi:10.1259/DMFR.20190495
Saccucci M, D’Attilio M, Rodolfino D, Festa F, Polimeni A, Tecco S. Condylar volume and condylar area in class I, class II and class III young adult subjects. Head Face Med. 2012;8(1):1. doi:10.1186/1746-160X-8-34
Saccucci M, Polimeni A, Festa F, Tecco S. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis. Head Face Med. 2012;8(1):1. doi:10.1186/1746-160X-8-15
Gorucu-Coskuner H, Atik E, El H. Reliability of cone-beam computed tomography for temporomandibular joint analysis. Korean J Orthod. 2019;49(2):81-88. doi:10.4041/kjod.2019.49.2.81
Whaites E, Drage N. Essentials of Dental Radiography and Radiology (Sixth Edition). 6th ed. Elsevier; 2021.
Scarfe WC, Angelopoulos C. Maxillofacial Cone Beam Computed Tomography: Principles, Techniques, and Clinical Applications. Springer Berlin Heidelberg; 2018.
Barghan S, Tetradis S, Mallya SM. Application of cone beam computed tomography for assessment of the temporomandibular joints. Aust Dent J. 2012;57(1):109-118. doi:10.1111/j.1834-7819.2011.01663.x
Al-Saleh MAQ, Jaremko JL, Alsufyani N, Jibri Z, Lai H, Major PW. Assessing the reliability of MRI-CBCT image registration to visualize temporomandibular joints. Dentomaxillofacial Radiol. 2015;44(6):1-8. doi:10.1259/dmfr.20140244
Caruso Si, Storti E, Nota A, Ehsani S, Gatto R. Review Article: Temporomandibular Join Anatomy Assessed by CBCT Images. Hindawi BioMed Res Int. Published online 2017. doi:https://doi.org/10.1155/2017/2916953 Review
E. Dawson P. Functional Occlusion From TMJ to Smile Design. Mosby Elsevier; 2007.
Dos Anjos Pontual ML, Freire JSL, Barbosa JMN, Frazão MAG, Dos Anjos Pontual A. Evaluation of bone changes in the temporomandibular joint using cone beam CT. Dentomaxillofacial Radiol. 2012;41(1):24-29. doi:10.1259/dmfr/17815139
Al-Koshab M, Nambiar P, John J. Assessment of condyle and glenoid fossa morphology using CBCT in south-east Asians. PLoS One. 2015;10(3):1-11. doi:10.1371/journal.pone.0121682
Kau CH, Abramovitch K, Kamel SG, Bozic M. Cone Beam CT of the Head and Neck: An Anatomical Atlas. Springer Berlin Heidelberg; 2011. doi:10.1007/978-3-642-12704-5
Larheim TA, Abrahamsson A-K, Kristensen M, Arvidsson LZ. Temporomandibular joint diagnostics using CBCT. Dentomaxillofacial Radiol. 2015;44. doi:10.1259/dmfr.20140235
Fakhar HB, Mallahi M, Panjnoush M, Kashani PM. Effect of Voxel Size and Object Location in the Field of View on Detection of Bone Defects in Cone Beam Computed Tomography. J Dent Tehran. 2016;13(4):279-286. doi:10.1097/SCS.0000000000 002592
Scarfe WC, Angelopoulos C, eds. Maxillofacial Cone Beam Computed Tomography: Principles, Techniques and Clinical Application. Springer Nature; 2018.
Kehrwald R, Sampaio H, Samira DC, Machado G, Polyane S, Queiroz M. Influence of Voxel Size on CBCT Images for Dental Implants Planning. Eur J Dent. Published online 2021. doi:https://doi.org/ 10.1055/s-0041-1736388.
Brüllmann D, Schulze RKW. Spatial resolution in CBCT machines for dental/maxillofacial applications-What do we know today? Dentomaxillofacial Radiol. 2015;44(1). doi:10.1259/dmfr.20140204
Jones J, Vajuhudeen Z, Smith H. Spatial resolution: Reference Article. Radiopaedia.org. doi:https://doi.org/10.53347/rID-6318
Patel A, Tee BC, Fields H, Jones E, Chaudhry J, Sun Z. Evaluation of cone-beam computed tomography in the diagnosis of simulated small osseous defects in computed tomography in the diagnosis of simulated small osseous defects in the mandibular condyle. Am J Orthod Dentofac Orthop. 2014;145(2):143.
Kurt MH, Bozkurt P, Görürgöz C, Bakırarar B, Orhan K. Accuracy of using different voxel sizes to detect osseous defects in mandibular condyle. J Stomatol. 2020;73(5):217-224. doi:10.5114/JOS.2020.100646
Santander P, Quast A, Olbrisch C, et al. Comprehensive 3D analysis of condylar morphology in adults with different skeletal patterns – a cross-sectional study. Head Face Med. 2020;16(1):1-10. doi:10.1186/s13005-020-00245-z
Librizzi Z, Tadinada A, Valiyaparambil J, Lurie A, Mallya S. Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose. Am J Orthod Dentofac Orthop. 2011;140:25-30.
Larheim TA, Abrahamsson AK, Kristensen M, Arvidsson LZ. Temporomandibular joint diagnostics using CBCT. Dentomaxillofacial Radiol. 2015;44(1). doi:10.1259/dmfr.20140235
Honey O, Scarfe W, Hilgers M, Klueber K, Silveira A, Haskell B. Accuracy of cone-beam computed tomography imaging of the temporomandibular joint: comparisons with panoramic radiology and linear tomography. Am J Orthod Dentofac Orthop. 2007;132(38):429.
Zhang Y, Xu X, Liu Z. Comparison of Morphologic Parameters of Temporomandibular Joint for Asymptomatic Subjects Using the Two-Dimensional and Three-Dimensional Measuring Methods. J Healthc Eng. 2017;2017. doi:10.1155/2017/5680708
Zhang ZL, Shi XQ, Ma XC, Li G. Detection accuracy of condylar defects in cone beam CT images scanned with different resolutions and units. Dentomaxillofacial Radiol. 2014;43(3). doi:10.1259/dmfr.20130414
Hintze H, Wiese M, Wenzel A. Cone beam CT and conventional tomography for the detection of morphological temporomandibular joint changes. Dentomaxillofacial Radiol. 2007;36(7):192.
Kiljunen T, Kaasalainen T, Suomalainen A, Kortesniemi M. Dental cone beam CT: A review. Phys Med. 2015;31(844):60.
Radiology. AA of O and M. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. [corrected]. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(57):238.
Marques AP, Perrella A, Arita ES, Pereira MFS de M, Cavalcanti M de GP. Assessment of simulated mandibular condyle bone lesions by cone beam computed tomography. Braz Oral Res. 2010;24(4):467-474. doi:10.1590/S1806-83242010000400016
Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review. J Digit Imaging. 2013;26(4):813-820.
Melo SLS, Bortoluzzi EA, Jr MA, Corrêa LR, Corrêa M. Diagnostic ability of a cone-beam computed tomography scan to assess longitudinal root fractures in prosthetically treated teeth. J Endod. 2010;36(11):1897.
Kolsuz ME, Bagis N, Orhan K, Avsever H, Demiralp KÖ. Comparison of the influence of FOV sizes and different voxel resolu¬tions for the assessment of periodontal defects. Dentomaxillofacial Radiol. 2015;44(7).
Lukat TD, Perschbacher SE, Pharoah MJ, Lam EWN. The effects of voxel size on cone beam computed tomography images of the temporomandibular joints. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2014;119(2).
Published
2023-06-24
How to Cite
ARIFIN, Sariyani Pancasari Audry et al. Cone-Beam Computed Tomography Accuracy for Morphological and Morphometric Evaluation of Mandibular Condyles Using Small FOV and Small Voxel Size. Journal of Indonesian Dental Association, [S.l.], v. 6, n. 1, p. 43-59, june 2023. ISSN 2621-6175. Available at: <http://jurnal.pdgi.or.id/index.php/jida/article/view/878>. Date accessed: 16 nov. 2024. doi: https://doi.org/10.32793/jida.v6i1.878.
Section
Review Article