Micro-Computed Tomography: Teknologi pencitraan mikroskopis berbasis Computed Tomography dan pengunaannya dalam analisis kualitas tulang
Abstract
Objectives: The literature review will briefly review the development of micro-CT as a microscopic radiographic modality in the field of dental research for bone analysisLiterature Review: Bone quality values represent the mechanical and biological characteristics of bone mass; structural properties including geometry, macrostructure, and microstructure; and tissue properties including modulus elasticity, mineral density, collagen quality, and character cells and bone marrow. Assessment of bone quality is carried out clinically, both locally and systemically, for various disease or therapeutic conditions. The use of micro-CT is growing prominently and effectively as a modality for analysis and evaluation of bone quality because various morphometric parameters to the microstructural level can be obtained. It applies to the analysis of osseointegration of dental implants and the healing conditions of pathological defects.
Conclusion: In conclusion, micro-CT with very high resolution is accurate in the analysis of bone quality because the imaging results can provide microstructure morphometric values in osseointegration conditions after dental implant installation and post-fracture biomechanical characteristics, which can be an essential scientific basis for various experimental bone analysis research designs.
References
Sullivan JDBO, Behnsen J, Starborg T, Macdonald AS, Phythian-adams AT, Else KJ, et al. X-ray micro-computed tomography (μCT): an emerging opportunity in parasite imaging. Parasitology. 2017;848–54.
Erpaçal B, Adıgüzel Ö, Cangül S. The use of micro-computed tomography in dental applications. Int Dent Res. 2019;9(2).
Swain M V., Xue J. State of the art of Micro-CT applications in dental research. Int J Oral Sci. 2009;1(4):177–88.
Irie MS, Rabelo GD, Spin-Neto R, Dechichi P, Borges JS, Soares PBF. Use of micro-computed tomography for bone evaluation in dentistry. Braz Dent J. 2018;29(3):227–38.
Metscher BD. Micro CT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1).
Latief FDE, Sari DS, Fitri LA. Applications of Micro-CT scanning in medicine and dentistry: Microstructural analyses of a Wistar Rat mandible and a urinary tract stone. J Phys Conf Ser. 2017;884(1):0–11.
du Plessis A, Broeckhoven C, Guelpa A, le Roux SG. Laboratory x-ray micro-computed tomography: A user guideline for biological samples. Gigascience. 2017;6(6):1–11.
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86.
Stauber M, Müller R. Micro-Computed Tomography : A Method for the Non-Destructive Evaluation of the Three-Dimensional Structure of Biological Specimens. 455:273–92.
Bruker MicroCT. Analysis of bone by micro-CT General information. In p. 1–41.
Faot F, Chatterjee M, de Camargos G V., Duyck J, Vandamme K. Micro-CT analysis of the rodent jaw bone micro-architecture: A systematic review. Bone Reports [Internet]. 2015;2:14–24. Available from: http://dx.doi.org/10.1016/j.bonr.2014.10.005
Murro B Di, Papi P, Passarelli PC, Addona AD, Pompa G. Attitude in Radiographic Post-Operative Assessment of Dental Implants among Italian Dentists : A Cross-Sectional Survey. 2020;
Dessel J Van, Ferreira L, Nicolielo P, Huang Y, Slagmolen P, Politis C, et al. Quantification of bone quality using different cone beam computed tomography devices : Accuracy assessment for edentulous human mandibles. Eur J Oral Implant. 2016;9(4):411–24.
Yeo I. Comparison of micro-CT and histomorphometry in the measurement of bone-implant contact ratios. 2019;(July).
Vandeweghe S, Coelho PG, Vanhove C, Wennerberg A, Jimbo R. No Title.
hang J, Feng Z, Wei J, Yu Y, Luo J, Zhou J, et al. Repair of Critical-Sized Mandible Defects in Aged Rat Using Hypoxia Preconditioned BMSCs with Up-regulation of Hif-1α [Internet]. Vol. 14, International journal of biological sciences. 2018. p. 449–60. Available from: http://europepmc.org/abstract/MED/29725266
Raggatt LJ, Wullschleger ME, Alexander KA, Wu ACK, Millard SM, Kaur S, et al. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol [Internet]. 2014;184(12):3192–204. Available from: http://dx.doi.org/10.1016/j.ajpath.2014.08.017
Mahamutha Affshana M, Priya J. Healing mechanism in bone fracture. J Pharm Sci Res. 2015;7(7):441–2.
Morgan EF, De Giacomo A, Gerstenfeld LC. Overview of fracture healing and its assesment. Methods Mol Biol [Internet]. 2014;1130:13–31. Available from: http://link.springer.com/10.1007/978-1-62703-989-5
Bigham-sadegh A, Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. 2014;
Whiley SP. Evaluating fracture healing using digital x-ray image analysis. CME. 2011;29(3):102–5.
Mehta M, Checa S, Lienau J, Hutmacher D, Duda GN. In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. Eur Cells Mater. 2012;24(0):358–71.
Campbell GM, Sophocleous A. Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies. Bonekey Rep [Internet]. 2014;3(June):1–12. Available from: http://dx.doi.org/10.1038/bonekey.2014.59
Bissinger O, Götz C, Wolff KD, Hapfelmeier A, Prodinger PM, Tischer T. Fully automated segmentation of callus by micro-CT compared to biomechanics. J Orthop Surg Res. 2017;12(1):1–9.
Isa INC, Dom SM, Hashim UF. Bone Analysis of Young Adult Rabbit Femur via Micro - Computed Tomography. Res Updat Med Sci. 2015;3(3):3–9.
Morgan E, Mason Z, Chien K, Pfeiffer A, Barnes G, Einhorn T GL, Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, et al. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–44.
Wehrle E, Tourolle né Betts DC, Kuhn GA, Scheuren AC, Hofmann S, Müller R. Evaluation of longitudinal time-lapsed in vivo micro-CT for monitoring fracture healing in mouse femur defect models. Sci Rep. 2019;9(1):1–12.
Effendy N, Ibrahim N, Mohamed N, Shuid A. An evidence-based review of micro-ct assesments of the postmenopausal osteoporosis rat model. Int J Pharmacol. 2015;11(3):177–200.
Neill KRO, Stutz CM, Mignemi NA, Burns MC, Murry MR, Nyman JS, et al. Micro-computed tomography assessment of the progression of fracture healing in mice. Bone [Internet]. 2012;50(6):1357–67. Available from: http://dx.doi.org/10.1016/j.bone.2012.03.008
Choi JY, Park J Il, Chae JS, Yeo ISL. Comparison of micro-computed tomography and histomorphometry in the measurement of bone–implant contact ratios. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2019;128(1):87–95. Available from: https://doi.org/10.1016/j.oooo.2018.12.023
Neldam CA, Lauridsen T, Rack A, Lefolii TT, Jørgensen NR, Feidenhans’L R, et al. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. J Cranio-Maxillofacial Surg [Internet]. 2015;43(5):682–7. Available from: http://dx.doi.org/10.1016/j.jcms.2015.03.012
Erpaçal B, Adıgüzel Ö, Cangül S. The use of micro-computed tomography in dental applications. Int Dent Res. 2019;9(2).
Swain M V., Xue J. State of the art of Micro-CT applications in dental research. Int J Oral Sci. 2009;1(4):177–88.
Irie MS, Rabelo GD, Spin-Neto R, Dechichi P, Borges JS, Soares PBF. Use of micro-computed tomography for bone evaluation in dentistry. Braz Dent J. 2018;29(3):227–38.
Metscher BD. Micro CT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1).
Latief FDE, Sari DS, Fitri LA. Applications of Micro-CT scanning in medicine and dentistry: Microstructural analyses of a Wistar Rat mandible and a urinary tract stone. J Phys Conf Ser. 2017;884(1):0–11.
du Plessis A, Broeckhoven C, Guelpa A, le Roux SG. Laboratory x-ray micro-computed tomography: A user guideline for biological samples. Gigascience. 2017;6(6):1–11.
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468–86.
Stauber M, Müller R. Micro-Computed Tomography : A Method for the Non-Destructive Evaluation of the Three-Dimensional Structure of Biological Specimens. 455:273–92.
Bruker MicroCT. Analysis of bone by micro-CT General information. In p. 1–41.
Faot F, Chatterjee M, de Camargos G V., Duyck J, Vandamme K. Micro-CT analysis of the rodent jaw bone micro-architecture: A systematic review. Bone Reports [Internet]. 2015;2:14–24. Available from: http://dx.doi.org/10.1016/j.bonr.2014.10.005
Murro B Di, Papi P, Passarelli PC, Addona AD, Pompa G. Attitude in Radiographic Post-Operative Assessment of Dental Implants among Italian Dentists : A Cross-Sectional Survey. 2020;
Dessel J Van, Ferreira L, Nicolielo P, Huang Y, Slagmolen P, Politis C, et al. Quantification of bone quality using different cone beam computed tomography devices : Accuracy assessment for edentulous human mandibles. Eur J Oral Implant. 2016;9(4):411–24.
Yeo I. Comparison of micro-CT and histomorphometry in the measurement of bone-implant contact ratios. 2019;(July).
Vandeweghe S, Coelho PG, Vanhove C, Wennerberg A, Jimbo R. No Title.
hang J, Feng Z, Wei J, Yu Y, Luo J, Zhou J, et al. Repair of Critical-Sized Mandible Defects in Aged Rat Using Hypoxia Preconditioned BMSCs with Up-regulation of Hif-1α [Internet]. Vol. 14, International journal of biological sciences. 2018. p. 449–60. Available from: http://europepmc.org/abstract/MED/29725266
Raggatt LJ, Wullschleger ME, Alexander KA, Wu ACK, Millard SM, Kaur S, et al. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol [Internet]. 2014;184(12):3192–204. Available from: http://dx.doi.org/10.1016/j.ajpath.2014.08.017
Mahamutha Affshana M, Priya J. Healing mechanism in bone fracture. J Pharm Sci Res. 2015;7(7):441–2.
Morgan EF, De Giacomo A, Gerstenfeld LC. Overview of fracture healing and its assesment. Methods Mol Biol [Internet]. 2014;1130:13–31. Available from: http://link.springer.com/10.1007/978-1-62703-989-5
Bigham-sadegh A, Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. 2014;
Whiley SP. Evaluating fracture healing using digital x-ray image analysis. CME. 2011;29(3):102–5.
Mehta M, Checa S, Lienau J, Hutmacher D, Duda GN. In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. Eur Cells Mater. 2012;24(0):358–71.
Campbell GM, Sophocleous A. Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies. Bonekey Rep [Internet]. 2014;3(June):1–12. Available from: http://dx.doi.org/10.1038/bonekey.2014.59
Bissinger O, Götz C, Wolff KD, Hapfelmeier A, Prodinger PM, Tischer T. Fully automated segmentation of callus by micro-CT compared to biomechanics. J Orthop Surg Res. 2017;12(1):1–9.
Isa INC, Dom SM, Hashim UF. Bone Analysis of Young Adult Rabbit Femur via Micro - Computed Tomography. Res Updat Med Sci. 2015;3(3):3–9.
Morgan E, Mason Z, Chien K, Pfeiffer A, Barnes G, Einhorn T GL, Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, et al. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–44.
Wehrle E, Tourolle né Betts DC, Kuhn GA, Scheuren AC, Hofmann S, Müller R. Evaluation of longitudinal time-lapsed in vivo micro-CT for monitoring fracture healing in mouse femur defect models. Sci Rep. 2019;9(1):1–12.
Effendy N, Ibrahim N, Mohamed N, Shuid A. An evidence-based review of micro-ct assesments of the postmenopausal osteoporosis rat model. Int J Pharmacol. 2015;11(3):177–200.
Neill KRO, Stutz CM, Mignemi NA, Burns MC, Murry MR, Nyman JS, et al. Micro-computed tomography assessment of the progression of fracture healing in mice. Bone [Internet]. 2012;50(6):1357–67. Available from: http://dx.doi.org/10.1016/j.bone.2012.03.008
Choi JY, Park J Il, Chae JS, Yeo ISL. Comparison of micro-computed tomography and histomorphometry in the measurement of bone–implant contact ratios. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2019;128(1):87–95. Available from: https://doi.org/10.1016/j.oooo.2018.12.023
Neldam CA, Lauridsen T, Rack A, Lefolii TT, Jørgensen NR, Feidenhans’L R, et al. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. J Cranio-Maxillofacial Surg [Internet]. 2015;43(5):682–7. Available from: http://dx.doi.org/10.1016/j.jcms.2015.03.012
Published
2020-12-30
How to Cite
RAHMAN, Fadhlil Ulum Abdul et al.
Micro-Computed Tomography: Teknologi pencitraan mikroskopis berbasis Computed Tomography dan pengunaannya dalam analisis kualitas tulang.
Jurnal Radiologi Dentomaksilofasial Indonesia (JRDI), [S.l.], v. 4, n. 3, p. 111-116, dec. 2020.
ISSN 2686-1321.
Available at: <http://jurnal.pdgi.or.id/index.php/jrdi/article/view/632>. Date accessed: 21 nov. 2024.
doi: https://doi.org/10.32793/jrdi.v4i3.632.
Section
Review Article
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.